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A method of input current shape synthesis, applied to the process of the electrodeposition of metals, 
is given. It is shown that the optimal control theory can be successfully applied to this kind of prob- 
lem. Essentials of the mathematics of the method and the computer program flow chart are also 
given. 

Theory is checked using experiments on the electrodeposifion of copper. The agreement between 
theoretical and experimental results is satisfactory. 

1. Introduction 

It is well known that irregular forms of metal 
deposits are obtained when electrodeposition 
under diffusion control is occurring [1-5]. The 
effect of the diffusion control can be decreased by 
applying pulsating or reversal currents [6-11], or 
completely avoided by applying pulsating poten- 
tial [12, 13], when, with the high efficiency of the 
process, rather good quality metal deposits can 
be obtained. However, on the basis of these 
results, nothing can be concluded in advance 
concerning the specific shapes of input currents 
or potentials to employ. 

This paper attempts to provide a method of 
input current synthesis for the electrodeposition 
process to obtain a specified amount of metal 
deposit in the shortest possible time without 
forcing the system into diffusion control. 

2. Mathematical  model,  statement and solution 
of  the problem 

The electrodeposition process with pulsating 
current described by Equations 1-5 is considered 
as a time optimal control problem: 
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C(t,fi) = Co (3) 
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d_Q = I (t) (5) 
dt 

where: C = Concentration 
D = Diffusion coefficient 
Co = Bulk concentration 

= Diffusion layer thickness 
I = Input current 

It is desired to find an input current I (t) which 
transfers the system for minimal time T from the 
initial state C(o,x) = Co and Q(o) = 0 to a 
specified final state 

C(T,x)  = Cs+(Co-Cs)X-3 (6) 

Q (T) = Qa (7) 
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without violating the physical constraints 

C(o,t) >i cs (8) 

O ~< I (t) ~</m.x (9) 

te[o,T] 
where: Cs = critical surface concentration 

Qa = quantity of electricity corres- 
ponding to the specified thickness 
of a metal deposit 

Ira,x= maximum permitted current 

There are a number of methods for solving the 
problem stated above, such as: dynamic pro- 
gramming [14], maximum principle [15], and 
method of moments [16]. In the Appendix A, 
a specific method which does not require a back- 
ground in these methods, but only a knowledge 
of the diffusion equation solution, is presented. 
The method is in fact a simplified version of the 
general method of moments. 

Applying this method, one arrives at the fol- 
lowing expression for the optimal input current: 

I(t) = 1 +sign 2~ Gm ( r , t )  + ~ ~ (10) 
m 1 

where the parameters :t ~ and #o have to be 
obtained by minimizing the expression 

l/l= mi. ~,mGm-b/.t dt+ 
Ata~lg 

1 

2,1, Gm + dt 
d 0 \ m  = 1 

subject to the constraint 

~. 2meldm+IzQd = 1 (12) 
m = l  

where: 

= 1Fex p [ -  ( 2m-  1) 2 Drc 2 (T-- 0/462] Gm (t, T) 

(13) 

e,am=~f~(C,-Co)(1-~)cos(2m;61)nXdx 

(14) 

The algorithm for solving the minimization 
problem (11) and (12), and the corresponding 
computer program are given in the Appendix B. 

For computational purposes the series in (10), 
(11) and (12) have to be truncated at some finite 
N giving generally arbitrary close approxima- 
tion of the optimal input current. 

The algorithm described in the Appendix B 
does not include directly the constraint (8). 
Instead, it has been assumed that the maximal 
permitted current/max for the optimal law (10) 
will not force the system to the diffusion-con- 
trolled conditions. 

3. Computer results 

Using the computer program described in the 
Appendix B, the optimal input current synthesis 
has been performed. The solution of the diffusion 
equation has been truncated at N = 7 terms. 
The following values of physical constants are 
used: 

D = 3"2x 1 0 - r c m 2 s  - t  

6 = 5"5 X 10 - 2  cm 

Co = 5 x 10-6 molcm -a 
Cs = 0"1 Co 

n.F = 2x 10 5Asmo1-1 
Im.x = 1-5 x 10 -4 Acm -z 

Qd = 0"054 A s cm- 2 

The optimal input shape of current is given in 
Fig. 1. The desired final state of the system and 
the state obtained by applying optimal input 
current are provided in Fig. 2. The discrepancies 
are due to the finite number of terms included, 
and are more emphasized in the vicinity of the 
electrode surface. The maximum number of 
terms accepted is limited by the convergence of 
the method used for solving the system of trans- 
cendental Equations (B.4), which is included in 
the algorithm. The algorithm has been success- 
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Fig. 1. Optimal input current. 
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Fig. 2. The diffusion layer concentration distribution. 

fully applied for N = 11, but for experimental 
purposes N = 7 was sufficient. 

4. Experimental 

Principally, the electrode on which copper is 
electrodeposited has been designed in the fol- 
lowing manner: a piece of nickel sheet has been 
covered with a defined layer of agar-agar gel, 
PrePared from the solution which has been used 
for the electrodeposition of copper (5 x 10-aM 
CuSO4 with 5 x 10-2M NazSO4 as supporting 
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Fig. 3. The polarization curve of the electrode used. 

electrolyte). The electrode assembly is described 
elsewhere [17]. A quantity of agar-agar solution, 
sufficient for all measurements in one set of 
experiments, is prepared. In this way, the same 
quality of gel is maintained. In all experiments, 
chemicals of p.a. quality and distilled water are 
used. 

A standard galvanostatic circuit is used. A 
copper counter-reference electrode of about 50 
times larger area than the working electrode 
is used. Copper is deposited using the input 
current shape theoretically specified in the pre- 
ceding section. Electrolysis was performed at 
25.0 -F 0.1~ 

Polarization curve and overpotential-time 
relationships have been plotted. 

5. Results and discussion 

The polarization curve for the electrodeposition 
of copper in the system already described is 
presented in Fig. 3. The limiting diffusion cur- 
rent for the electrodeposition is used to calculate 
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Fig. 4. The determination of the transition time in the 
case of a current the magnitude of which is equal to the 
amplitude value. 
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Table 1. The results of the application of the optimal deposition regime on a model system 

Input current 
shape Calculated Experiment I Experiment II Experiment III 

I Pulse (sec) 200 200 200 200 
I Pause (sec) 89 89 89 89 
II Pulse (sec) 67 67 67 67 
II Pause (sec) 57 57 57 57 
III  Pulse (sec) 60 48 43 50 
III Pause (sec) 42 42 42 42 
IV Pulse (sec) 42 38 35 35 
Total time (sec) 557 541 533 540 
Relative error of 

total time Yo - -  - 2 . 9  - 4 . 3  -3 .1  

the diffusion coefficient of the Cu(II) cation. A 
value of 3.2x 10 -6 cm 2 sec -1 is thus obtained. 
Therefore, the input shape of current could be 
calculated using the previously described method. 

An overpotential-time relationship for the 
electrodeposition of copper with a fixed maxi- 
mum current density of 1.5 x 10 -4 A cm -2 is 
presented in Fig. 4. The transition time of 216 
see and transition overpotential of 0.350 V, at 
which potential the process is diffusion-control- 
led, were graphically determined using the pro- 
cedure given in [18]. 

The values of the transition time and the 
overpotential, at which diffusion control of the 
process starts, were used for experimental 
checking of the applied current input shapes. So, 
whenever the overpotential of the process 
equalled the value of 0.350 V, the pulse was 
switched off to avoid diffusion-controlled electro- 
deposition. The results for the electrodeposition 
of copper performed in this way are given in 
Table 1. It should be noted that experimental 
and theoretically-predicted results are over- 
lapping up to the third pulse. From the third 
pulse onwards discrepancies appear, due to 
simplifications on the mathematical model of the 
system. 

Finally, the electrodeposition of copper was 
performed with the effective* d.c. current density 
to check whether it is possible to get the same 
amount of deposit for a total time of 557 sec, 

* It is easily calculated that for the given current input 
shape 

I,rr = 0"66 I,,,~x, 

assuming the process is not diffusion-controlled. 
An overpotential-time relationship, for the 

electrodeposition of copper, with Ioff= 9.9 • 10- 5 
A cm -2, is presented in Fig. 5. The transition 
time is reached at 456 see indicating that the 
process is diffusion-controlled for a ,shorter 
period of time than in the case of electrolysis 
with applied currents of specified input shape 
(cf. Table 1). 

It may be concluded that the electrodeposition 
of thin layers of metals, using input currents of  
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Fig. 5. The determination of the transition time in the case 
of a current the magnitude of which is equal to the effec- 
tive value. 
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shape programmed in the manner described in 
this paper, can be carried out with currents 
higher than the limiting diffusion current without 
the process becoming diffusion-controlled. The 
times of electrolyses programmed in this way 
exceed the transition times for corresponding 
effective d.c. current densities. These results 
might be practically applied in plating techno- 
logy. 

6. Conclusion 

It is shown that the optimal control theory can 
be successfully applied to the electrodeposition 
of metals with pulsating current. A method for 
synthesizing the desired shape of input current, 
based on the minimum time criterion, is given. 

Experiments on the electrodeposition of cop- 
per performed with calculated current input 
shape fit the theory satisfactorily. 
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Appendix A 

Introducing the substitution 

I(t) = i(t)+ kl (A1) 

where - 1 < k < 1 

supl i(t) l (A2) 
l = I I i(t) II = te[o,tl] 

is the maximal absolute value of the current i(t) 
on the interval [0,tl] (norm in Banach L ~~ or M 
space [16]), the constraint (9) becomes 

I i(t)l ~< l (A3) 

and solutions of the Equations (1)-(6) at t = tl 
become: 

fro C(x,tl) = C o-  Hm(z,ta,x)[i(t)+ klJdz 
m = l  

(A4) 

Q(ta) = [i(z) + kl]dz (A5) 

where 

Hm(z,q, x)= 1 [ nFD exp / 
( 2 m -  1) 2 D~2t. ,7 

4-7 tq  - ~)J 
( 2 m -  1)nx 

cos (A6) 
25 

Let us introduce the following notations 

el(x,t~) = C(x,q)-Co ead = (C~-Co)( l -  ~) 

e2(tl) = Q(q) e2d = Qo 

It is useful to restate the problem in the following 
way (minimum norm control problem): Given 
the initial state ea(x,o ) = 0, e2(o) = 0 find the 
input current i(t) which takes the system to the 
desired state 

el(x,q) = eld (A7) 

ez(ta) = e2d (A8) 

and which minimizes the norm l. 
The relationships (A7) and (A8) will be satis- 

fied if the relationship 

2reel am ..}_ ]~e2 d = 
m = l  

fs l~,mGm('C,tl,-k~li('c)d'c+ 
kIiil[m~= l]tmGm(T, tl)q-~d~ (19)  

is satisfied for arbitrary/~ ~: 0 A m ~0  (m = 1,2,...). 
From the definition (A2) it follows 

2meldm ..t_ f12e2 d 
m = l  

/r f0t~[m~__ 1 2mGm(T, t 1) q-/2] dz} ( h l 0 )  

or 

I1i11=I  
~meldm_t_ fie2 d 

m = l  

; i '  Im~ 1 )~mGm "t- # dz+kfi~[m~=,2mGm+#ldz 

(Al l )  

The relation (A1 l) in particular must be satisfied 
for 2 and # which maximize the fight-hand side 
of (111) 



166 K. I. POPOV,  B. J. L A Z A R E V I ~  A N D  M. KOSTI(2  

1 ~< m a x  

,~meldm Jr/22e2 d 
m=1 

;llm~= i~mGrajr[dld'gJr~;l[m~=1~'mGmJr~IdT 
or  

,~>max Ill '1 ~' 'rr= ]l 2meia,a+lle~a=l ti oo (A12) 
m=l AraGra-[-/A [ d-r Jr k AmGra Jr//  dz 

m = 1 J 0 / m  = 1 

This means that one has to minimize the expression 

Ill l{ mE= ~ file ~176 1 I-2~", 2mGm+#[ dz+k  2 2mGm+/~ dz (113) 1 P 
1 JO Lm= I / 

under the equality constraint 

• ,~,meldmjr/Ae2d = 1 (A14) 
m = l  

Thus, any input current i(t) which makes 
el(x, tl) = eld and e2(tl) =e2d must satisfy (A12) 
and the current with minimum l must satisfy 
(A12) with the equality sign. 

Denoting the optimal values of Xm and/~ with 
X ~ and #o and taking into account relations 
(A9), (A10) and (A13), one can come to the 
following equation 

;; [ ~ )~~ -']" ~~ /~;i[ ~r '~'0 i~ + G m Jr 
m 1 m = l  

.O]d,=lf:,  Gm+.Old + 

/k ['j +.~ (A15) 

From the statement of the auxiliary problem, 
one can conclude that for k = 1, the current I(t) 
which takes the system during the time interval 
(o,tl) to the desired final state, must have a 
minimum amplitude equal to 2 L If 21>Im,. the 
time interval can be decreased, otherwise it must 
be increased. When, by iterations, the time 
t~ = T is found such that 2l =/max, the input 
current 

l~ t) = ~-~{ l + sign [m~12 ~ t,T) + l~ol} 

(A18) 

is the solution of the minimum time problem. 
This means that the iterative algorithm for 

solving the minimization problem (A13) and 
(A14) with different final times t, until 2l = 
Im,x have to be formulated. Such an algorithm is 
described in the Appendix B. 

From (A15) it follows directly that Appendix B 

i~ l s i g n I ~  ~ ] (A16)  = 2mGm(tl, t)+/~ ~ 
m 1 

or taking into account the substitution (A1) 

{ r it I~ 1 k+sign ~ 2~ tl)+It~ (A17) 
Lm = 1 ._13 

rain min t i l l  0 F(A, tl,z dz + k 2 , 1 1  . ).N J ( 2 [  I 1" 2N )  = 2 1  . . " 2~  

If the series in (A13) and (A14) is truncated at N 
terms, from Equation (A14) it follows that 

e2d 

Subs tituting (B1) into (A13) one gets 

f i '  F(X'tl'~)d~] 

1--  ~ '~meldm 
[A --  m =,  (B1) 
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where: 

F(X,q,z) = 1 _ _ + ~  2 ~ G m ( q , r )  - ela~q 
e2d = 1 L ezd .J 

Since the function F(2,t,z) may have a maximum 
of  N zeros, zz, z 2 , . . ,  zN it follows that 

E;i f; J(21,. . .  2N) = +_ F(2 , t l , z )dz -  F(2, t jc)dz 1 
Ita 1 ; tl + . . . +  F(2,tl,z)dz +k  F(2,tx,z)dz (B3) 
W ~N 0 

(the positive sign corresponds to a positive value 
of  F(2,t , ,z)  in the first interval [o,~,] .From 
OJ/021 = 0 (i = 1,2 . . . .  N)  one can come to the 
following system of  transcendental equations: 

I ] / K : l / - - O Z - - /  - - d Z +  . . . .  - - d z  + k  
LJo a,~i J~, a;~i 

f tlOF d'r (B4) 
o O2i 

(i = 1,2, ..., N )  

f rom which the zeros z ~ , . . . ,  zr~ of  the function 
F(A,q,z) can be determined. 

From the system of  algebraic equations 

F(21, t l , z i ) = O  ( i = 1 , 2  . . . . .  N) (B5) 

the optimal values of  parameters 2~ can be 

~ c~ ~ 2 ..... ~ )= o 

k=~,2,...,a/ 

F(A, ~1, t~)= 0 
A/ 

I -  E ,%o, dm 

6~e cl 

0,7 

Fig 6. Computer programme flow chart. 

determined, while the optimal value of # is 
obtained f rom Equation (B1). Through the 
Equations (B4) and (B5), the solution of  the 
auxiliary problem for assumed tx is obtained. 
Using the gradient technique, the expression 

Atl = k l r  2 - J ( 2 ~ 1 7 6  
Ll~a~ _] atl 

will provide the increment Aq which will lead 
the iterative procedure to the desired condition 

Ima x = 21 

The flow chart of  the corresponding computer 
program is given in Fig. 6. 
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